Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.503
1.
Biofabrication ; 16(3)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38574552

The advent of 3D bioprinting technologies in tissue engineering has unlocked the potential to fabricatein vitrotissue models, overcoming the constraints associated with the shape limitations of preformed scaffolds. However, achieving an accurate mimicry of complex tissue microenvironments, encompassing cellular and biochemical components, and orchestrating their supramolecular assembly to form hierarchical structures while maintaining control over tissue formation, is crucial for gaining deeper insights into tissue repair and regeneration. Building upon our expertise in developing competent three-dimensional tissue equivalents (e.g. skin, gut, cervix), we established a two-step bottom-up approach involving the dynamic assembly of microtissue precursors (µTPs) to generate macroscopic functional tissue composed of cell-secreted extracellular matrix (ECM). To enhance precision and scalability, we integrated extrusion-based bioprinting technology into our established paradigm to automate, control and guide the coherent assembly ofµTPs into predefined shapes. Compared to cell-aggregated bioink, ourµTPs represent a functional unit where cells are embedded in their specific ECM.µTPs were derived from human dermal fibroblasts dynamically seeded onto gelatin-based microbeads. After 9 days,µTPs were suspended (50% v/v) in Pluronic-F127 (30% w/v) (µTP:P30), and the obtained formulation was loaded as bioink into the syringe of the Dr.INVIVO-4D6 extrusion based bioprinter.µTP:P30 bioink showed shear-thinning behavior and temperature-dependent viscosity (gel atT> 30 °C), ensuringµTPs homogenous dispersion within the gel and optimal printability. The bioprinting involved extruding several geometries (line, circle, and square) into Pluronic-F127 (40% w/v) (P40) support bath, leveraging its shear-recovery property. P40 effectively held the bioink throughout and after the bioprinting procedure, untilµTPs fused into a continuous connective tissue.µTPs fusion dynamics was studied over 8 days of culture, while the resulting endogenous construct underwent 28 days culture. Histological, immunofluorescence analysis, and second harmonic generation reconstruction revealed an increase in endogenous collagen and fibronectin production within the bioprinted construct, closely resembling the composition of the native connective tissues.


Bioprinting , Polyethylenes , Polypropylenes , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Bioprinting/methods , Poloxamer , Uridine Triphosphate , Tissue Engineering/methods , Printing, Three-Dimensional
2.
Int J Nanomedicine ; 19: 3697-3714, 2024.
Article En | MEDLINE | ID: mdl-38681091

Introduction: Over 75% of clinical microbiological infections are caused by bacterial biofilms that grow on wounds or implantable medical devices. This work describes the development of a new poly(diallyldimethylammonium chloride) (PDADMAC)/alginate-coated gold nanorod (GNR/Alg/PDADMAC) that effectively disintegrates the biofilms of Staphylococcus aureus (S. aureus), a prominent pathogen responsible for hospital-acquired infections. Methods: GNR was synthesised via seed-mediated growth method, and the resulting nanoparticles were coated first with Alg and then PDADMAC. FTIR, zeta potential, transmission electron microscopy, and UV-Vis spectrophotometry analysis were performed to characterise the nanoparticles. The efficacy and speed of the non-coated GNR and GNR/Alg/PDADMAC in disintegrating S. aureus-preformed biofilms, as well as their in vitro biocompatibility (L929 murine fibroblast) were then studied. Results: The synthesised GNR/Alg/PDADMAC (mean length: 55.71 ± 1.15 nm, mean width: 23.70 ± 1.13 nm, aspect ratio: 2.35) was biocompatible and potent in eradicating preformed biofilms of methicillin-resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) when compared to triclosan, an antiseptic used for disinfecting S. aureus colonisation on abiotic surfaces in the hospital. The minimum biofilm eradication concentrations of GNR/Alg/PDADMAC (MBEC50 for MRSA biofilm = 0.029 nM; MBEC50 for MSSA biofilm = 0.032 nM) were significantly lower than those of triclosan (MBEC50 for MRSA biofilm = 10,784 nM; MBEC50 for MRSA biofilm 5967 nM). Moreover, GNR/Alg/PDADMAC was effective in eradicating 50% of MRSA and MSSA biofilms within 17 min when used at a low concentration (0.15 nM), similar to triclosan at a much higher concentration (50 µM). Disintegration of MRSA and MSSA biofilms was confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy. Conclusion: These findings support the potential application of GNR/Alg/PDADMAC as an alternative agent to conventional antiseptics and antibiotics for the eradication of medically important MRSA and MSSA biofilms.


Alginates , Anti-Bacterial Agents , Biofilms , Gold , Nanotubes , Polyethylenes , Quaternary Ammonium Compounds , Staphylococcus aureus , Biofilms/drug effects , Gold/chemistry , Gold/pharmacology , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Alginates/chemistry , Alginates/pharmacology , Nanotubes/chemistry , Animals , Mice , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyethylenes/chemistry , Polyethylenes/pharmacology , Staphylococcal Infections/drug therapy , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Cell Line , Microbial Sensitivity Tests , Metal Nanoparticles/chemistry
3.
Mol Med ; 30(1): 52, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641575

BACKGROUND: Skin fibrosis affects the normal function of the skin. TGF-ß1 is a key cytokine that affects organ fibrosis. The latency-associated peptide (LAP) is essential for TGF-ß1 activation. We previously constructed and prepared truncated LAP (tLAP), and confirmed that tLAP inhibited liver fibrosis by affecting TGF-ß1. SPACE peptide has both transdermal and transmembrane functions. SPACE promotes the delivery of macromolecules through the stratum corneum into the dermis. This study aimed to alleviate skin fibrosis through the delivery of tLAP by SPACE. METHODS: The SPACE-tLAP (SE-tLAP) recombinant plasmid was constructed. SE-tLAP was purified by nickel affinity chromatography. The effects of SE-tLAP on the proliferation, migration, and expression of fibrosis-related and inflammatory factors were evaluated in TGF-ß1-induced NIH-3T3 cells. F127-SE-tLAP hydrogel was constructed by using F127 as a carrier to load SE-tLAP polypeptide. The degradation, drug release, and biocompatibility of F127-SE-tLAP were evaluated. Bleomycin was used to induce skin fibrosis in mice. HE, Masson, and immunohistochemistry were used to observe the skin histological characteristics. RESULTS: SE-tLAP inhibited the proliferation, migration, and expression of fibrosis-related and inflammatory factors in NIH-3T3 cells. F127-SE-tLAP significantly reduced ECM production, collagen deposition, and fibrotic pathological changes, thereby alleviating skin fibrosis. CONCLUSION: F127-SE-tLAP could increase the transdermal delivery of LAP, reduce the production and deposition of ECM, inhibit the formation of dermal collagen fibers, and alleviate the progression of skin fibrosis. It may provide a new idea for the therapy of skin fibrosis.


Polyethylenes , Polypropylenes , Skin Diseases , Transforming Growth Factor beta , Animals , Mice , Bleomycin/adverse effects , Collagen/metabolism , Fibrosis/drug therapy , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylenes/pharmacology , Polypropylenes/pharmacology , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Skin Diseases/metabolism , Smad Proteins/drug effects , Smad Proteins/metabolism , Skin/drug effects , Skin/metabolism , Skin/pathology
4.
Anal Chem ; 96(18): 7014-7021, 2024 May 07.
Article En | MEDLINE | ID: mdl-38659215

Membrane-based lateral flow immunoassays (LFAs) have been employed as early point-of-care (POC) testing tools in clinical settings. However, the varying membrane properties, uncontrollable sample transport in LFAs, visual readout, and required large sample volumes have been major limiting factors in realizing needed sensitivity and desirable precise quantification. Addressing these challenges, we designed a membrane-free system in which the desirable three-dimensional (3D) structure of the detection zone is imitated and used a small pump for fluid flow and fluorescence as readout, all the while maintaining a one-step assay protocol. A hydrogel-like protein-polyelectrolyte complex (PPC) within a polyelectrolyte multilayer (PEM) was developed as the test line by complexing polystreptavidin (pSA) with poly(diallyldimethylammonium chloride) (PDDA), which in turn was layered with poly(acrylic acid) (PAA) resulting in a superior 3D streptavidin-rich test line. Since the remainder of the microchannel remains material-free, good flow control is achieved, and with the total volume of 20 µL, 7.5-fold smaller sample volumes can be used in comparison to conventional LFAs. High sensitivity with desirable reproducibility and a 20 min total assay time were achieved for the detection of NT-proBNP in plasma with a dynamic range of 60-9000 pg·mL-1 and a limit of detection of 56 pg·mL-1 using probe antibody-modified fluorescence nanoparticles. While instrument-free visual detection is no longer possible, the developed lateral flow channel platform has the potential to dramatically expand the LFA applicability, as it overcomes the limitations of membrane-based immunoassays, ultimately improving the accuracy and reducing the sample volume so that finger-prick analyses can easily be done in a one-step assay for analytes present at very low concentrations.


Biomarkers , Quaternary Ammonium Compounds , Humans , Immunoassay/methods , Biomarkers/analysis , Biomarkers/blood , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/analysis , Limit of Detection , Acrylic Resins/chemistry , Peptide Fragments/analysis , Peptide Fragments/blood , Polyethylenes/chemistry , Polystyrenes/chemistry
5.
Mikrochim Acta ; 191(5): 265, 2024 04 16.
Article En | MEDLINE | ID: mdl-38625451

Sleep deprivation (SD) is highly prevalent in the modern technological world. Emerging evidence shows that sleep deprivation is associated with oxidative stress. At the organelle level, the Golgi apparatus actively participates in the stress response. In this study, to determine whether SD and Golgi apparatus stress are correlated, we rationally designed and fabricated a novel Golgi apparatus-targeted ratiometric nanoprobe called Golgi dots for O2·- detection. This probe exhibits high sensitivity and selectivity in cells and brain slices of sleep-deprived mice. Golgi dots can be readily synthesized by coprecipitation of Golgi-F127, an amphiphilic polymer F127 modified with a Golgi apparatus targeting moiety, caffeic acid (CA), the responsive unit for O2·-, and red emissive carbon nanodots (CDs), which act as the reference signal. The fluorescence emission spectrum of the developed nanoprobe showed an intense peak at 674 nm, accompanied by a shoulder peak at 485 nm. As O2·- was gradually added, the fluorescence at 485 nm continuously increased; in contrast, the emission intensity at 674 nm assigned to the CDs remained constant, resulting in the ratiometric sensing of O2·-. The present ratiometric nanoprobe showed high selectivity for O2·- monitoring due to the specific recognition of O2·- by CA. Moreover, the Golgi dots exhibited good linearity with respect to the O2·- concentration within 5 to 40 µM, and the limit of detection (LOD) was ~ 0.13 µM. Additionally, the Golgi dots showed low cytotoxicity and an ability to target the Golgi apparatus. Inspired by these excellent properties, we then applied the Golgi dots to successfully monitor exogenous and endogenous O2·- levels within the Golgi apparatus. Importantly, with the help of Golgi dots, we determined that SD substantially elevated O2·- levels in the brain.


Brain , Caffeic Acids , Polyethylenes , Polypropylenes , Sleep Deprivation , Animals , Mice , Golgi Apparatus , Dietary Supplements
6.
J Orthop Surg Res ; 19(1): 259, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38659060

PURPOSE: The purpose of the study was to describe a novel growth guidance system, which can avoid metal debris and reduce the sliding friction forces, and test the durability and glidability of the system by in vitro test. METHOD: Two major modifications were made to the traditional Shilla system, including the use of ultra-high molecular weight polyethylene (UHMWPE) gaskets to avoid direct contact between the screw and rod, and polishing the surface of the sliding part of the rod. We tested the durability of the system by a fatigue test, which the samples were test on the MTS system for a 10 million cycle of a constant displacement. Pre and post-testing involved weighing the UHMWPE gaskets and observing the wear conditions. The sliding ability were measured by a sliding displacement test. The maximum sliding displacement of the system was measured after a 300 cycles of dynamic compressive loads in a sinusoidal waveform. RESULTS: After the fatigue test, all the UHMWPE gaskets samples showed some of the fretting on the edge of the inner sides, but its still isolated and avoided the friction between the screws and rods. There was no production of metallic fretting around the sliding screws and rods. The average wear mass of the UHMWPE gaskets was 0.002 ± 0.001 g, less than 1.7% of the original mass. In the sliding test, the novel growth guidance system demonstrated the best sliding ability, with an average maximum sliding distance(AMSD) of 35.75 ± 5.73 mm, significantly better than the group of the traditional Shilla technique(AMSD 3.65 ± 0.46 mm, P < 0.0001). CONCLUSION: In conclusion, we modified the Shilla technique and designed a novel growth guidance system by changing the friction interface of sliding screw and rod, which may significantly reduce the metallic debris and promote spine growth. The fatigue test and sliding dislocation test demonstrated the better durability and glidability of the system. An in vivo animal experiment should be performed to further verify the system.


Materials Testing , Polyethylenes , Scoliosis , Humans , Materials Testing/methods , Friction , Bone Screws , In Vitro Techniques
7.
J Appl Biomater Funct Mater ; 22: 22808000241240296, 2024.
Article En | MEDLINE | ID: mdl-38509449

Joint replacements provide pain free movement for the injured or our aging population. Current prothesis mainly consist of hard metal on metal, or ceramic femoral head on ultra-high-molecular weight polyethylene (UHMWPE). In this study, a rodent fracture model was used to test the influence of wear debris from a high-performance polymer (polyimide MP-1™). Saline, MP-1™ Low Dose in Saline (1%), or MP-1 High Dose (2%) in Saline was injected directly into a standard closed unilateral femoral fracture in 12-week old Sprague Dawley rats (n = 25) for 1, 3 and 6 weeks. Endpoints included radiography, micro-computed tomography, mechanical testing and paraffin histology. No adverse effects from the wear particles were observed from the current study based on radiology, mechanical or histological data. Although the particles were present, histological analysis revealed a progression in healing between the Polyimide treated groups and the non-treated saline control groups over the duration of 1, 3, and 6 weeks, with no inhibition from the particles. The MP-1™ wear debris generated are larger than 1 µm thus are not able to be engulfed by macrophages and cause osteolysis. This family of polymers (polyimides) may be an ideal material to consider for articulating joints and other implants in the human body.


Fracture Healing , Hip Prosthesis , Humans , Animals , Rats , Aged , X-Ray Microtomography , Rats, Sprague-Dawley , Polyethylenes/adverse effects , Macrophages , Prosthesis Failure , Hip Prosthesis/adverse effects
8.
Int J Nanomedicine ; 19: 2691-2708, 2024.
Article En | MEDLINE | ID: mdl-38510793

Purpose: Patients afflicted with dry eye disease (DED) experience significant discomfort. The underlying cause of DED is the excessive accumulation of ROS on the ocular surface. Here, we investigated the nitrogen doped-graphene quantum dots (NGQDs), known for their ROS-scavenging capabilities, as a treatment for DED. Methods: NGQDs were prepared by using citric acid and urea as precursors through hydrothermal method. The antioxidant abilities of NGQDs were evaluated through: scavenging the ROS both extracellular and intracellular, regulating the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway of human corneal epithelial cells (HCECs) and their transcription of inflammation related genes. Furthermore, NGQDs were modified by Arg-Gly-Asp-Ser (RGDS) peptides to obtain RGDS@NGQDs. In vivo, both the NGQDs and RGDS@NGQDs were suspended in 0.1% Pluronic F127 (w/v) and delivered as eye drops in the scopolamine hydrobromide-induced DED mouse model. Preclinical efficacy was compared to the healthy and DPBS treated DED mice. Results: These NGQDs demonstrated pronounced antioxidant properties, efficiently neutralizing free radicals and activating the intracellular Nrf2 pathway. In vitro studies revealed that treatment of H2O2-exposed HCECs with NGQDs induced a preservation in cell viability. Additionally, there was a reduction in the transcription of inflammation-associated genes. To prolong the corneal residence time of NGQDs, they were further modified with RGDS peptides and suspended in 0.1% Pluronic F127 (w/v) to create RGDS@NGQDs F127 eye drops. RGDS@NGQDs exhibited superior intracellular antioxidant activity even at low concentrations (10 µg/mL). Subsequent in vivo studies revealed that RGDS@NGQDs F127 eye drops notably mitigated the symptoms of DED mouse model, primarily by reducing ocular ROS levels. Conclusion: Our findings underscore the enhanced antioxidant benefits achieved by modifying GQDs through nitrogen doping and RGDS peptide tethering. Importantly, in a mouse model, our novel eye drops formulation effectively ameliorated DED symptoms, thereby representing a novel therapeutic pathway for DED management.


Dry Eye Syndromes , Graphite , Polyethylenes , Polypropylenes , Quantum Dots , Mice , Humans , Animals , Antioxidants/pharmacology , Reactive Oxygen Species , Graphite/chemistry , Quantum Dots/chemistry , Nitrogen/chemistry , Hydrogen Peroxide , NF-E2-Related Factor 2 , Poloxamer , Dry Eye Syndromes/drug therapy , Inflammation , Ophthalmic Solutions , Peptides
9.
Proc Inst Mech Eng H ; 238(4): 438-443, 2024 Apr.
Article En | MEDLINE | ID: mdl-38439747

With low wear rates shown by contemporary bearing materials of total hip prostheses, the standard deviation of wear rate is relatively high. Therefore, large sample sizes are needed for an adequate power of test. Because wear tests take a long time, it is practical to test several samples simultaneously. A new high-capacity, multidirectional wear test device, called the SuperCTPOD-200, was introduced. A 3 million-cycle wear test with an unprecedented sample size of 200 was performed for VEXLPE. The duration of the test was 6 weeks. The wear factor was normally distributed with a mean ± SD of 1.64 × 10-7 mm3/Nm ± 0.22 × 10-7 mm3/Nm (n = 200). The observation that SD was 13.1% of the mean can be useful in power analyses of future tests with other highly cross-linked polyethylenes. Burnishing was the most typical feature on the worn pins, which was in agreement with clinical findings on retrieved acetabular liners. The present study emphasizes statistics that often plays a minor role only in wear studies.


Arthroplasty, Replacement, Hip , Hip Prosthesis , Humans , Materials Testing , Aluminum Oxide , Polyethylenes , Prosthesis Failure
10.
Water Res ; 254: 121397, 2024 May 01.
Article En | MEDLINE | ID: mdl-38461599

Municipal wastewater treatment plants (WWTPs) play a crucial role in the collection and redistribution of plastic particles from both households and industries, contributing to their presence in the environment. Previous studies investigating the levels of plastics in WWTPs, and their removal rates have primarily focused on polymer type, size, shape, colour, and particle count, while comprehensive understanding of the mass concentration of plastic particles, particularly those <1 µm (nanoplastics), remains unclear and lacking. In this study, pyrolysis gas chromatography-mass spectrometry was used to simultaneously determine the mass concentration of nine selected polymers (i.e., polyethylene (PE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), nylon 6, nylon 66, polyvinylchloride (PVC), poly(methyl methacrylate) (PMMA) and polycarbonate (PC)) below 1 µm in size across the treatment processes or stages of three WWTPs in Australia. All the targeted nanoplastics were detected at concentrations between 0.04 and 7.3 µg/L. Nylon 66 (0.2-7.3 µg/L), PE (0.1-6.6 µg/L), PP (0.1-4.5 µg/L), Nylon 6 (0.1-3.6 µg/L) and PET (0.1-2.2 µg/L), were the predominant polymers in the samples. The mass concentration of the total nanoplastics decreased from 27.7, 18 and 9.1 µg/L in the influent to 1, 1.4 and 0.8 µg/L in the effluent, with approximate removal rates of 96 %, 92 % and 91 % in plants A, B and C, respectively. Based on annual wastewater effluent discharge, it is estimated that approximately 24, 2 and 0.7 kg of nanoplastics are released into the environment per year for WWTPs A, B and C, respectively. This study investigated the mass concentrations and removal rates of nanoplastics with a size range of 0.01-1 µm in wastewater, providing important insight into the pollution levels and distribution patterns of nanoplastics in Australian WWTPs.


Caprolactam/analogs & derivatives , Polymers , Water Pollutants, Chemical , Water Purification , Wastewater , Microplastics , Nylons , Pyrolysis , Gas Chromatography-Mass Spectrometry , Australia , Plastics/analysis , Polypropylenes/analysis , Polymethyl Methacrylate , Polyethylenes , Water Pollutants, Chemical/chemistry , Environmental Monitoring
11.
Biomacromolecules ; 25(4): 2312-2322, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38456765

Local delivery of pain medication can be a beneficial strategy to address pain management after joint replacement, as it can decrease systemic opioid usage, leading to less side and long-term effects. In this study, we used ultrahigh molecular weight polyethylene (UHMWPE), commonly employed as a bearing material for joint implants, to deliver a wide set of analgesics and the nonsteroidal anti-inflammatory drug tolfenamic acid. We blended the drugs with UHMWPE and processed the blend by compression molding and sterilization by low-dose gamma irradiation. We studied the chemical stability of the eluted drugs, drug elution, tensile properties, and wear resistance of the polymer blends before and after sterilization. The incorporation of bupivacaine hydrochloride and tolfenamic acid in UHMWPE resulted in either single- or dual-drug loaded materials that can be sterilized by gamma irradiation. These compositions were found to be promising for the development of clinically relevant drug-eluting implants for joint replacement.


Arthroplasty, Replacement , ortho-Aminobenzoates , Materials Testing , Polyethylenes/chemistry , Analgesics , Anti-Inflammatory Agents, Non-Steroidal
12.
Nanoscale Horiz ; 9(5): 863-872, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38533738

The behavior of polyelectrolytes in confined spaces has direct relevance to the protein mediated ion transport in living organisms. In this paper, we govern lithium chloride transport by the interface provided by polyelectrolytes, polycation, poly(diallyldimethylammonium chloride) (PDDA) and, polyanion, double stranded deoxyribonucleic acid (dsDNA), in confined graphene oxide (GO) membranes. Polyelectrolyte-GO interfaces demonstrate neuromorphic functions that were successfully applied with nanochannel ion interactions contributed, resulting in ion memory effects. Excitatory and inhibitory post-synaptic currents were tuned continuously as the number of pulses applied increased accordingly, increasing decay times. Furthermore, we demonstrated the short-term memory of a trained vs untrained device in computation. On account of its simple and safe production along with its robustness and stability, we anticipate our device to be a low dimensional building block for arrays to embed artificial neural networks in hardware for neuromorphic computing. Additionally, incorporating such devices with sensing and actuating parts for a complete feedback loop produces robotics with its own ability to learn by modifying actuation based on sensing data.


DNA , Graphite , Polyethylenes , Quaternary Ammonium Compounds , Graphite/chemistry , DNA/chemistry , Quaternary Ammonium Compounds/chemistry , Polyethylenes/chemistry , Neural Networks, Computer , Membranes, Artificial , Oxides/chemistry
13.
J Chromatogr A ; 1720: 464802, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38507871

Successive multiple ionic-polymer layers (SMILs) have long since proved their worth in capillary electrophoresis as they ensure stable electroosmotic flow (EOF) and relatively high separation efficiency. Recently, we demonstrated that plotting the plate height (H) against the solute migration velocity (u) enabled a reliable quantitative evaluation of the coating performances in terms of separation efficiency. In this work, various physicochemical and chemical parameters of the SMIL coating were studied and optimized in order to decrease the slope of the ascending part of the H vs u curve, which is known to be controlled by the homogeneity in charge of the coating surface and by the possible residual solute adsorption onto the coating surface. SMILs based on poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium styrene sulfonate) (PSS) were formed and the effect of each polyelectrolyte molar mass and of the number of polyelectrolyte layers (up to 21 layers) was studied. The use of polyethylene imine as an anchoring first layer was considered. More polyelectrolyte couples based on PDADMAC, polybrene, PSS, poly(vinyl sulfate), and poly(acrylic acid) were tested. Finally, zwitterionic polymers based on the poly(α-l-lysine) scaffold were synthesized and used as the last layer of SMILs, illustrating their ability to finetune the EOF, while maintaining good separation efficiency.


Electrophoresis, Capillary , Polyethylenes , Polymers , Quaternary Ammonium Compounds , Polyelectrolytes , Cations , Electrophoresis, Capillary/methods , Proteins/analysis , Polyethyleneimine
14.
J Biotechnol ; 385: 13-22, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38423470

BACKGROUND: Owing to improvement of the molecular diagnostic methods using purified preparations of nucleic acids (NAs), the development of effective methods providing the isolation of DNA is still relevant. The sorption properties of magnetic multi-walled carbon nanotubes (MWCNTs), oxidized MWCNTs and MWCNTs (pristine and oxidized) modified with polydiallyldimethylammonium chloride (pDADMAC) with respect to double strained DNA have been studied. RESULTS: It was shown that in the presence of MWCNTs/pDADMAC particles the DNA molecules were reversibly retained by the particle's surface. The optimal conditions for each step of DNA extraction from model solutions using the obtained material were selected. A comparative evaluation of the effectiveness of the proposed method for DNA isolation based on the results of spectrophotometry and real-time PCR was carried out. It was shown that the desorbed DNA was efficiently amplified in PCR, inhibition of polymerase did not occurred. Probable mechanisms of DNA retention due to the influence of residual impurities of catalysts in the MWCNT composition, as well as the surface charge of nanotubes are proposed. CONCLUSION: Sequentially oxidized and coated with pDADMAC magnetically susceptible CNTs are seemed to be a promising material for development of low-cost systems proving an easy isolation, storage, and subsequent use of dsDNA in molecular diagnostics. The sorption properties of such systems are determined with highly developed specific surface area and their chemical composition.


Nanotubes, Carbon , Polyethylenes , Quaternary Ammonium Compounds , Nanotubes, Carbon/chemistry , Adsorption , DNA , Magnetic Phenomena
15.
ACS Appl Bio Mater ; 7(3): 1888-1898, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38349328

Garlic-derived exosome-like nanovesicles (GELNs) could function in interspecies communication and may serve as natural therapeutics to regulate the inflammatory response or as nanocarriers to efficiently deliver specific drugs. Staphylococcus aureus (S. aureus) is able to hide within host cells to evade immune clearance and antibiotics, leading to life-threatening infections. On-site detection and efficient treatment of intracellular S. aureus infection in wounds remain challenging. Herein, we report a thermosensitive, injectable, visible GELNs-based wound dressing, Van@GELNs/F127 hydrogel (gel Van@GELNs), which is H2O2-responsive and can slowly release vancomycin into host cells forS. aureus infection visualization and treatment in wounds. GELNs show inherent antibacterial activity, which is significantly enhanced after loading vancomycin. Both GELNs and Van@GELNs have the ability to be internalized by cells, so Van@GELNs are more effective than free vancomycin in killing S. aureus in RAW 264.7 macrophages. When applied to an S. aureus-infected wound on a mouse, the colorless HRP&ABTS/Van@GELNs/F127 solution immediately changes to a green hydrogel and shows better therapeutic effect than vancomycin. Thus, direct visualization by the naked eye and effective treatment of S. aureus infection in wounds are achieved by gel Van@GELNs. We anticipate gel Van@GELNs be applied for the theranostics of S. aureus infection diseases in the clinic in the near future.


Exosomes , Garlic , Polyethylenes , Polypropylenes , Staphylococcal Infections , Mice , Animals , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcus aureus , Hydrogen Peroxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Bandages , Hydrogels/therapeutic use , Hydrogels/pharmacology
16.
Macromol Rapid Commun ; 45(9): e2300704, 2024 May.
Article En | MEDLINE | ID: mdl-38346444

The isothermal melting behaviors of ultra-high molecular weight polyethylene (UHMWPE) with different entangled states (i.e., nascent and melt-crystallized samples) are studied. For two kinds of UHMWPE samples, the result shows that the relative content of survived crystals (Xs) exponentially decreases with time and reaches a constant value. It is suggested that such a melting behavior is related to the observed nonlinear growth of crystals induced by the kinetically rejected entanglements accumulated at the growth front. Additionally, the exponential decay of Xs with time provides a characteristic melting time (τ) for the melting process. Compared to the melt-crystallized UHMWPE, the τ value of nascent UHMWPE is generally longer even in a higher temperature range, which is mainly because the former has a larger entanglement density difference. Furthermore, these observations demonstrate that UHMWPEs with different entangled states have an analogous melting mechanism since they exhibit a similar melting activation energy (≈1300 kJ mol-1).


Crystallization , Polyethylenes , Kinetics , Polyethylenes/chemistry , Transition Temperature , Temperature
17.
Knee ; 47: 160-170, 2024 Mar.
Article En | MEDLINE | ID: mdl-38394995

BACKGROUND: Medially stabilised total knee replacement systems aim to provide a more natural feeling knee replacement by providing increased stability through flexion. The aim of this study was to compare the kinematics and wear of two different medially stabilised total knee replacement systems in an experimental simulation study. The Medial Rotation Knee™ system (MRK) is an early medially stabilised knee (>20 years clinical success); the SAIPH® knee system being a more modern and refined, bone conserving evolution of the original design with a larger size range. METHODS: Three SAIPH and three MRK total knee replacements (MatOrtho Ltd, UK) were investigated. The study was performed on a knee simulator with load controlled input kinematic conditions (ISO 14243-1). 6 million cycles of simulation were carried out with the wear of the UHMWPE tibial components assessed gravimetrically. The resulting anterior-posterior translation and tibial rotation position was measured throughout the study. RESULTS: The mean UHMWPE wear rate was 0.57 ± 0.71 and 1.24 ± 2.0 mm3/million cycles for SAIPH and MRK total knee replacement systems respectively with no significant difference in wear (p = 0.24). Analysis of simulator output kinematics showed a larger range of anterior-posterior motion for SAIPH total knee replacements compared to MRK. The magnitude of tibial rotation was low for both knee replacement systems. CONCLUSION: The small magnitude of anterior-posterior displacement and tibial rotation motion demonstrates the inherent stability of this knee system design offered by the constrained medial compartment. This study shows the potential for medially stabilised knee systems as a low polyethylene surface wear solution.


Arthroplasty, Replacement, Knee , Knee Prosthesis , Prosthesis Design , Range of Motion, Articular , Arthroplasty, Replacement, Knee/instrumentation , Humans , Biomechanical Phenomena , Range of Motion, Articular/physiology , Knee Joint/physiopathology , Knee Joint/surgery , Knee Joint/physiology , Materials Testing , Prosthesis Failure , Polyethylenes
18.
Soft Matter ; 20(9): 2075-2087, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38345756

Salicylic acid (SA) finds extensive applications in the treatment of rheumatic and skin diseases because of its analgesic, anti-inflammatory and exfoliating properties. As it is lipophilic in nature, there is a need for appropriate delivery systems to harness these properties for different applications. Herein, we examined the suitability of Pluronic P123/F127 micellar systems as delivery media by investigating the structural, flow and antimicrobial properties of P123/F127-SA solutions and hydrogels using DLS, SANS, rheological and zone inhibition measurement techniques. SA modulates the aggregation characteristics of these surfactant systems and brings about spherical-to-worm-like micelle-to-vesicular structural transitions in the hydrophobic Pluronic P123 system, a spherical-to-worm-like micellar transition in the mixed P123/F127 system and an onset of inter-micellar attraction in the hydrophilic Pluronic F127 system. SA-solubilized systems of both hydrophobic and hydrophilic Pluronics inhibit the growth of Gram-positive and Gram-negative bacteria with comparable MIC values. This suggests that the interaction of SA molecules with the bacterial cell membrane remains unobstructed upon encapsulation in Pluronic micelles. F127 hydrogel-based SA formulations with rheological properties suitable for topical applications and up to 15% SA loading were prepared. These will be useful SA ointments as F127 is an FDA-approved excipient for topical drug delivery applications. The results indicate that Pluronics remain effective as delivery agents for SA and exhibit interesting structural polymorphism upon its solubilization.


Hydrogels , Poloxalene , Poloxamer , Polyethylenes , Polypropylenes , Poloxamer/chemistry , Salicylic Acid/pharmacology , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Micelles
19.
J Chromatogr A ; 1718: 464719, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38340458

Dendrigraft poly(L-lysine) (DGL) constitutes a promising dendritic-like drug vehicle with high biocompatibility and straightforward access via ring-opening polymerization of N-carboxyanhydride in water. The characterization of the different generations of DGL is however challenging due to their heterogeneity in molar mass and branching ratio. In this work, free solution capillary electrophoresis was used to perform selective separation of the three first generations of DGL, and optimized conditions were developed to maximize inter-generation resolution. To reduce solute adsorption on the capillary wall, successive multiple ionic polymer layer coatings terminated with a polycation were deposited onto the inner wall surface. PEGylated polycation was also used as the last layer for the control of the electroosmotic flow (EOF), depending on the PEGylation degree and the methyl-polyethylene glycol (mPEG) chain length. 1 kDa mPEG chains and low grafting densities were found to be the best experimental conditions for a fine tuning of the EOF leading to high peak resolution. Molar mass polydispersity and polydispersity in effective electrophoretic mobility were successfully determined for the three first generations of DGL.


Polyethylene Glycols , Polyethylenes , Polylysine , Polyelectrolytes , Electrophoresis, Capillary/methods
20.
Biomed Mater ; 19(2)2024 Feb 26.
Article En | MEDLINE | ID: mdl-38364281

Development of wound dressings with enhanced therapeutic properties is of great interest in the modern healthcare. In this study, a zein-based nanofibrous wound dressing containing curcumin as a therapeutic agent was fabricated through electrospinning technique. In order to achieve desirable properties, such as antibacterial characteristics, reduced contact angle, and enhanced mechanical properties, the layer-by-layer technique was used for coating the surfaces of drug-loaded nanofibers by sequentially incorporating poly (sodium 4-styrene sulfonate) as a polyanion and poly (diallyldimethylammonium chloride) (PDADMAC) as a polycation. Various analyses, including scanning electron microscopy, Fourier transform infrared spectroscopy, drug release assessment., and mechanical tests were employed to assess the characteristics of the prepared wound dressings. Based on the results, coating with polyelectrolytes enhanced the Young's modulus and tensile strength of the electrospun mat from 1.34 MPa and 4.21 MPa to 1.88 MPa and 8.83 MPa, respectively. The coating also improved the controlled release of curcumin and antioxidant activity, while the outer layer, PDADMAC, exhibited antibacterial properties. The cell viability tests proved the appropriate biocompatibility of the prepared wound dressings. Moreover, our findings show that incorporation of the coating layers enhances cell migration and provides a favorable surface for cell attachment. According to the findings of this study, the fabricated nanofibrous wound dressing can be considered a promising and effective therapeutic intervention for wound management, facilitating the healing process.


Curcumin , Nanofibers , Polyethylenes , Quaternary Ammonium Compounds , Zein , Nanofibers/chemistry , Zein/chemistry , Bandages/microbiology , Anti-Bacterial Agents/chemistry
...